
Applying case-based reasoning for product configuration

in mass customization environments

Hwai-En Tsenga,*, Chien-Chen Changb, Shu-Hsuan Changc

aInstitute of Production System Engineering and Management, National Chin-Yi Institute of Technology,

35, Lane 215, Section 1, Chung-Shan Road, Taiping City, Taichung County, 411 Taiwan, ROC
bDepartment of Industrial Design, Huafan University, No. 1, Huafan Road, Shihtin Hsiang, Taipei Hsien, Taiwan, ROC

cDepartment of Industrial Education, National Changhua University of Education, 1 Jin-De Road, Changhua 500, Taiwan, ROC

Abstract

Product variation and customization is a trend in current market-oriented manufacturing environment. Companies produce products in

order to satisfy customer’s needs. In the customization environment, the R&D sector in an enterprise should be able to offer differentiation

in product selection after they take the order. Such product differentiation should meet the requirement of cost and manufacturing procedure.

In the light of this, how to generate an accurate bill of material (BOM) that meets the customer’s needs and gets ready for the production is an

important issue in the intensely competitive market.

The purpose of this study is to reduce effectively the time and cost of design under the premise to manufacture an accurate new product. In

this study, the Case-Based Reasoning (CBR) algorithm was used to construct the new BOM. Retrieving previous cases that resemble the

current problem can save a lot of time in figuring out the problem and offer a correct direction for designers. When solving a new problem,

CBR technique can quickly help generate a right BOM that fits the present situation.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Mass-customization; Product configuration; Case-based reasoning; Bill of material; Feature tree
1. Introduction

The manufacturing trend of producing a smaller number

but wider variety of products forces enterprises to adopt

differentiation strategy to offer customers more choices of

products. Such kind of variation strategy often makes the

interwoven constraint relationship of products even more

complicated, which is one of the characteristics of in a

customization manufacturing environment (Jiao, Ma, &

Tseng, 2003; Salvado & Forza, 2004). Fohn, Liau, Greef,

Young, and O’Grady (1995) once used computers as a case

study and demonstrated that approximately 30–85% of

product information was wrong and that this kind of mistake

would causes in engineering design and substantial burden
0957-4174/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.eswa.2005.06.026

* Corresponding author. Tel.: C886 4 2392 4505x6001; fax: C886 4

2393 0062.

E-mail address: hwai_en@seed.net.tw (H.-E. Tseng).
to an enterprise. Therefore, how to bring the complexity and

accuracy of product configuration into control has become

one of the important challenges enterprises have to face

nowadays. In dealing with product configuration, it is easy

to lose control of product configuration due to the

incomplete communication or cognition conflict if an

enterprise totally depends on the knowledge or experience

of the professional personnel. This will increase the

difficulty of design alternation and the pressure of cost.

Different approaches have been adopted to solve the

product configuration problem. For example, the generic

bill of material (GBOM) concept had been used to solve the

problem of product configuration management (Hegge &

Wortmann, 1991; Jiao, Tseng, Ma, & Jhou, 2000; Olsen &

Saetre, 1997) and the object-oriented concept had been used

to replace traditional database viewpoint (Kobler & Norrie,

1997). Constraint Satisfactory Problem (CSP) Algorithm

offers another way to solve the product configuration

problem (Ryu, 1999). Jiao et al. (2003) claimed that it

is necessary to build a Product Family Structure (PFA),

which could adjust the new product variation and satisfy
Expert Systems with Applications 29 (2005) 913–925
www.elsevier.com/locate/eswa

http://www.elsevier.com/locate/eswa


H.-E. Tseng et al. / Expert Systems with Applications 29 (2005) 913–925914
the customer’s needs. Simpson (2001) attempted to

establish a product variety tradeoff evaluation method,

which applied goal programming and statistical analysis

techniques to optimization of product family. Du, Jiao, and

Tseng (2002) dealt with product variation and flexibility by

a graph method similar to a programming syntax with the

viewpoint of product family design. In general, current

researchers in the field mostly focus on the issues about

creating information system environment and solving

optimization-based problem for product family design.

As a mater of fact, the maintenance of accurate product

configurations starts right after an order is placed. After the

confirmation of customers, an initial product configuration

can be quickly generated. With the data transmitted to R&D

sector, it is sometimes necessary to redesign and reorganize

these data so as to generate accurate BOM that will

guarantee the smooth production procedure. If previous

successful cases can be fully applied to the design

alternative derived from customization, the error rate of

BOM will be lowered, thus enhancing the commonality of

parts of products and reducing the total cost of an enterprise.

Different from traditional views of customization, the case-

based database is built to solve product configuration

problem. case-based reasoning (CBR) can help solve the

problem through the retrieval of similar previous cases

(Kolodner, 1993). In terms of product configuration, this

approach has the following the advantages:

(1) It reuses the previous successful reasoning case to solve

a new problem an enterprise is encountered with.

(2) Through previous successful cases, the same mistakes

can be avoided and alternatives can be generated to

improve the quality of problem solving.

(3) It is easy to collect previous failed or successful cases,

which reduces the bottleneck of knowledge retrieval.

(4) CBR can prevent the loss of an enterprise know how

when experienced technicians leave a company.

In this paper, integration of graph-based BOM tree and

CBR is explored for the mass customization environment.

Basic ideas regarding CBR are reviewed in Section 2. In

Section 3, the proposed CBR algorithms are discussed with

a ballpoint pen as an illustrated example. In Section 4, a

CNC lather is used as an example to verify the mythology

mentioned in this study. Finally, conclusions are made and

future work is suggested in Section 5.
2. Basic concepts of case-based reasoning

There are two fundamental concepts for CBR. One is that

similar problems will have similar solutions. The other is

that the same problems will often occur. More importantly,

CBR simulates the human problem-processing model and

can have the self-learning function by constant accumu-

lation of past experience. When the user enters a new
problem in CBR, CBR will search for the data that have the

highest similarity with the existing cases and adjust the

previous cases to suit the new problem. General CBR

algorithms are composed of the following steps (Kim &

Han, 2001; Kolodner, 1993):

Step 1: Index assignment. Classify cases in the database

through different features that serve as indexes.

Step 2: Case retrieval in the database. For a new

problem, enter the index values for its features and

compare cases to look for the one that has the highest

similarity.

Step 3: Old case adaptation. Adjust the retrieved cases to

fit the solution to the current status.

Step 4: New case evaluation. Evaluate the adjusted case

to ensure its feasibility.

Step 5: Case storage. Store the newly adapted case in the

database to achieve the self-learning function.

Generally, CBR deals with the experience previously set

and turns it into a dependent one in the database for further

retrieval. For a related case, the user only needs to key in the

known indexes and CBR will look for a case that has the

highest similarity in the database to serve for problem

solution. Then, through partly adapting of the content of the

retrieved case, it is possible to solve the new problem from

the old experience. At last, saving the case of new problem

solution in the database will reach the purpose of knowledge

regeneration for future reuse.

In the past, CBR had been successfully applied to the

solution to many problems. For example, on-line services to

help desk application (Göker & Roth-Berghofer, 1999),

scheduling and process planning (Chang, Dong, Liu, & Lu,

2000; Schmidt, 1998), hydraulic machine design (Vong,

Leung, & Wang, 2002), architecture design (Heylighen &

Neuckermans, 2001), customer relationship management

(Choy, Lee, & Lo, 2003), fault diagnosis (Liao, Zang, &

Mount, 2000; Yang, Han, & Kim, 2004), design and

implementation of knowledge management (Lau, Wong,

Hui, & Pun, 2003; Wang & Hsu, 2004), prediction of

information systems outsourcing success (Hsh, Chiu, &

Hsh, 2004), customer and market plan (Changchien & Lin,

2005; Chiu, 2002). In summary of the review, the evolution

of CBR methods depends on the integration of domain

problem and application specific.

Traditionally, BOM deals with a database through tables

(Cunningham, Higgins, & Browne, 1996; Olsen & Saetre,

1997; Vang & Wortmann, 1992). Such a structure cannot

handle the product configuration in a customization

environment. In a BOM hierarchical structure, situations

vary. Sometimes, only node values will be changed while

sometimes a part of or even the whole structure will be

changed. To solve this kind of problem, a tree hierarchy

method and CBR technique are incorporated for product

configuration.



H.-E. Tseng et al. / Expert Systems with Applications 29 (2005) 913–925 915
3. Proposed CBR algorithms for product configuration

3.1. Expression of product configuration

For different types of products, product configuration can

be described according to their features, which can be form,

function, appearance, quality feature, stock mode, and

technology specification. Currently, there is no consistent

way in describing features. Instead, features of products and

companies should be taken into consideration.

In this study, traditional BOM’s tree structure and the

expression of features are combined to describe character-

istics of product configuration, which is defined as a product

feature tree. In such a tree structure, the relationship of

parent–child levels can represent the relationships between

parts and subassembly. Take the PILOT pen (see Fig. 1(a))

for instance. Fig. 1(b) stands for its product feature tree, in

which the contoured circles and gray circles symbolize the

nodes and features, respectively. Here, the so-called features

describe the characteristics of the parent nodes. For

example, in Fig. 1(b), there are three features for the pen

cap: the color is blue; the diameter of the ink cartridge is

0.4 mm; and the shape is circular. In the diagram, the

straight line represents the line that connects nodes,

indicating the hierarchical family relationship. The child
(a)

Pen

Body

TipTailCartridge

PILOT

0.4 Blue SilBlue

1

3

14

8

11

2

1

2

1

(b)

BlueCap

Blue cartridge

Body

Tip

Fig. 1. Pen: (a) diagram of a blue pen (b) feature tree (Left number represents weigh

the reader is referred to the web version of this article.)
points are dependent on the changing of parent nodes. To

make sure that this property can be handled, the following

rules should be obeyed:

Rule 1: The connected nodes should not form a loop.

Rule 2: Features should be used to describe nodes so as to

guarantee that there is one and only one node in

the parent level.

Rule 3: When nodes stand for parts, the nodes in the child

level represent the subparts or features of the

node.

Rule 4: When nodes stand for features, there will be no

nodes in the child level; the features describe the

characteristics of the node in the parent level.

Rule 5: The standard of setting up the features and nodes

of a product configuration should be established

by the personnel in charge of the planning of

product configuration.

In terms of data storage, the menu was used in this study

because of the following advantages:

1. Visualized user-friendly interface: Types of data storage

are identical to those in the user interface. Therefore, no

specific training is needed for database maintenance.
Cap

ver

Blue 0.4 Circle

4

1
11

Blue tail

t for each node). (For interpretation of the reference to colour in this legend,



H.-E. Tseng et al. / Expert Systems with Applications 29 (2005) 913–925916
2. Hierarchical tree representation: It features the parent–

child level way of representation, the concept of parts

and subparts.

In the interface design, contoured circles and gray circles

represent nodes and features, respectively. Black lines

represent the ones that connect nodes. The diagram is

depicts the coordination of nodes, where the root node

serves as the initial point (0,0) and other nodes are deployed

in an ascending order. If a parent node is set to be (X,Y), and

its child node is (X1,Y1), then X1ZXC1; Y1ZYC(1CN); N

is the number of total nodes and cannot appear twice. The

data storage of Fig. 1 is shown in Fig. 2.
3.2. Retrieval and comparison of cases

For the retrieval and comparison of cases, we need to

check first whether the cases are equal in terms of each

attribute; f I
j represents the value of the jth attribute of input

Case (I), and f R
ij is the value of the jth attribute of the ith

case in the database (R). In this study, it is hypothesized

that Sðf I
j ; f

R
ij Þ2½0; 1�. When f I

j hf R
ij , the output equals to 1

whereas when f I
j sf R

ij , the output equals 0. Finally, z equals
Pen
(0,0)

Cap
(1,1)

Body
(1,5)

Tip
(2,6)

Tail
(2,10)

Cartridge

(2,8)

PILOT

(1,13)

0.4
(3,11)

Blue
(2,3)

Silver
(3,7)

Blue
(3,12)

0.4
(2,2)

Y
-A

xis

X-Axis

Circle
(2,4)

Blue
(3,9)

Fig. 2. Storage format of feature tree.
to the sum of the number of nodes in the child level node of

the jth attribute and the node itself, namely, 1.

Second, we need to calculate the similarity of each node.

Simðf I
j ; f

R
ij Þ denotes the similarity of the jth attribute of input

Case (I) and the jth attribute of the ith Case in the database

(R). To begin with, we have to check whether the node is

equal to its child level nodes and calculate the total number

of nodes from Sðf I
j ; f

R
ij Þ. The similarity of the node can be

obtained from Formula (1):

Simðf I
j ; f

R
ij Þ Z

PlZjCzK1
kZj Sðf I

k ; f
R
ik Þ

z
(1)

Finally, we need to calculate the similarity between

nodes. This can be done by dividing the summation of the

product of the weight Wj of the jth attribute and the

similarity output of Formula (1) by the sum of weights,Pn
jZ1 Wj, denoted as Formula (2):

Similaryðf I ; f R
i Þ Z

Pn
jZ1½WjSimðf I

j ; f
R
ij Þ�Pn

jZ1 Wj

(2)

In this study, it is hypothesized that nodes on the higher

level are closer to the final product and that a node is

composed of the nodes on the child level (parts or

subassembly) and features. Therefore, when a node is

different, at least one node on its child level will be changed

accordingly. Therefore, the relative importance of the node

on the parent level is bigger than that of the nodes on the

child level. The summation of the number of nodes itself

and that of the nodes below decides the weight of the node.

This is shown in Fig. 1(b), in which the number by the node

indicates its weight.

It can be seen from Fig. 1(b) that the nodes below the

node Pen are, from the top to the bottom and from the left

and the right, PILOT, body, cap, ink cartridge, tail, tip, blue,

0.4, rounded tip, 0.4, blue, blue, silver, 13 child nodes in

total. With the node itself 1, added, the weight of the node

equals 14. The node PILOT does not have any child node on

the lower levels. So, it has a weight of 1, the node PILOT

itself. The node Body has seven child nodes, Ink Cartridge,

Tail, Tip, 0.4, Blue, Blue, and Silver. As a result, its weight

is 8. The node Cap has three child nodes, Blue, 0.4, Rounded

Tip, and the value of its weight is 4. In the same way, the

weights of the nodes in the third level are 3 for node Ink

Cartridge, 2 for node Tail, 2 to node Tip, 1 for node Blue, 1

for node ‘0.4’, and 1 for node Rounded Tip. Accordingly,

the weights for the nodes on the fourth level will be 1 for

node ‘0.4’, 1 for node Blue, 1 for node Blue, and 1 for node

Silver.

The algorithms for case comparison can be listed as

follows (see Fig. 3).

Step 1: Input nodes

Enter the node to be compared and the node in

the database.



Start

Step 1.
Input node.

Step 2.
Check whether the

node have been
traversed.

Step 3.
Check whether the

entry nodes are
equal.

Step 4.
Search for the child

nodes.

Step 1.
Input child node.

Step 5.
Find the nodes
on the dame

level.

Step 1.
Input sibling node
in the same level.

Step 6.
Back to the upper

level.

Step 7.
Check whether the

node is the root
node.

Step8.
End

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Fig. 3. Algorithms for case comparison.

H.-E. Tseng et al. / Expert Systems with Applications 29 (2005) 913–925 917
Step 2: Check whether the entry nodes have been

traversed.

Yes: Jump to Step 5.

No: Process Step 3.

Step 3: Check whether the entry nodes are equal.

Yes: Simðf I
j ; f

R
ij ÞZ1, process Step 4.

No: Simðf I
j ; f

R
ij ÞZ0, jump to Step 5.

Step 4: Search for the child nodes.

Check whether or not the nodes on the child

level have not been traversed.

Yes: Jump to Step 1.

No: Process Step 5.

Step 5: Find the nodes on the same level.

Check if there are nodes on the same level that

have not been traversed.

Yes: Jump to Step 1.
No: Process Step 6.

Step 6: Back to the upper level.

Step 7: Check whether the node is a root node.

Yes: Process Step 7.

No: Jump to Step 1.

Step 8: End. The comparison of two hierarchical trees

comes to the end.

Take the PILOT pens in Figs. 1(a) and 4 as an example

for the comparison algorithms, the similarity and the

traverse order. There are differences in their product

configuration. As can be seen in Fig. 5(a) and (b), contoured

circles and gray circles stand for nodes and features,

respectively. Gray lines represent the ones that connect

nodes. Black lines indicate the traverse direction and the

numbers show the traverse order.



Fig. 4. Green 0.3: PILOT pen. (For interpretation of the reference to colour

in this legend, the reader is referred to the web version of this article.)

H.-E. Tseng et al. / Expert Systems with Applications 29 (2005) 913–925918
Step 1: Input the node (pen) in Fig. 5(a) and the node

(pen) in Fig. 5(b)

Step 2: Check whether the entry nodes have been

traversed. Process Step 3.

Step 3: Check whether the entry nodes are equal. Enter

Yes, Simðf I
j ; f

R
ij ÞZ1. Process Step 4.

Step 4: Find nodes on the child level. The child nodes of

the node (pen) have not been traversed. Therefore, jump

to Step 1.

Step 1: Input nodes. Enter the node(PILOT) in Fig. 5(a)

and the node(PILOT) in Fig. 5(b).

Step 2: Check whether these two nodes have been

traversed. Process Step 3.
Pen

Body

TipTailCartridge

PILOT

0.3 Green Silver

1

2

3

4

5

6

7 10

11 12

13

14

19

Green

8 9

(a) BOM diagram of PILOT p

Pen

Body

TipTailCartridge

PILOT

0.4 Blue Silver

1

2

3

4

5

6

7 10

11 12

13

14

19

Blue

8 9

(b) BOM diagram of PILOT p

Fig. 5. BOM diagram (number on a
Step 3: Check whether these entry nodes are equal. Enter

Yes, Simðf I
j ; f

R
ij ÞZ1. Process Step 4.

Step 4: Look for the child nodes. There are no child

levels for the node (PILOT) in Fig. 5(a) and (b). Process

Step 5.

Step 5: Find the nodes on the same level. The node

(body) has not been traversed. Therefore, jump to Step 1.

Step 1: Input nodes. Enter the node(body) in Fig. 5(a) and

the node(body) in Fig. 5(b).

Step 2: Check whether the entry nodes have been

traversed. Process Step 3.

Step 3: Check whether these nodes are equal. Enter Yes,

Simðf I
j ; f

R
ij ÞZ1. Process Step 4.

Step 4: Look for the child nodes. The child levels of the

node(body) in Fig. 5(a) and (b) have not been traversed.

Jump to Step 1.

Step 1: Input nodes. Enter node (ink cartridge) in

Fig. 5(a) and node(ink cartridge) in Fig. 5(b).

Step 2: Check whether the entry nodes have traversed.

Process Step 3.
Cap

Green 0.3

15

16

18

Level 1

Level 2

Sharp17 Level 3

Level 4

en (green).

Cap

Blue 0.4

15

16

18

Leve1 1

Circle17

Leve1 4

Leve1 3

Leve1 2

en (blue).

rc represents traverse order).



1
2

C1!0C2!1C1!1CC4!1
4

C1!0C1!0C1!0

41

Cases in database Yes

No

Start

Input related features
values of product.

(Step 1)

Construct feature tree.
(Step 2)

Find the most similar
case from the database

using the features.
(Step 3)

Is it the most
similar case?

Fine-tune the data to
fit the current status.

(Step 4)

Store the adjusted data
in the database.

(Step 5)

Build the new
case.

End

Data Input

Data Output

Fig. 6. CBR algorithms for product configuration.

H.-E. Tseng et al. / Expert Systems with Applications 29 (2005) 913–925 919
Step 3: Check whether the entry nodes are equal. Enter

Yes, Simðf I
j ; f

R
ij ÞZ1. Process Step 4.

Step 4: Look for the child nodes. The child levels of the

node(ink cartridge) in Fig. 5(a) and (b) have not been

traversed. Jump to Step 1.

Step 1: Input nodes. Enter node(0.3) in Fig. 5(a) and

node(0.4) in Fig. 5(b).

Step 2: Check whether the entry nodes have been

traversed. Process Step 3.

Step 3: Check whether the nodes are equal. Enter No,

Simðf I
j ; f

R
ij ÞZ0. Process Step 5.

Step 5: Find the nodes on the same level. The

node(green) in Fig. 5(a) and the node(blue) in Fig. 5(b)

have not been traversed. Jump to Step 1.

Repeat the same steps until the comparison of the two

tree structures is done. From calculation, the similarity can

be generated:

† n:nZ14

† Wj:jZ{1,2,.,14}Z{pen, PILOT, body, ink cartridge,

0.3, green, tail, green, tip, silver, cap, green, 0.3, sharp

tip}

W1 Z 14; W2 Z 1; W3 Z 8; W4 Z 3;

W5 Z 1; W6 Z 1; W7 Z 2; W8 Z 1;

W9 Z 2; W10 Z 1; W11 Z 4; W12 Z 1;

W13 Z 1; W14 Z 1

Xn

jZ1

Wj Z 41

† f I
j :jZ{1,2,.,14}Z{pen, PILOT, body, ink cartridge, 0.

3, green, tail, green, tip, silver, cap, green, 0.3, sharp tip}

† f R
ij :jZ{1,2,.,14}Z{pen, PILOT, body, ink cartridge, 0.

4, blue, tail, blue, tip, silver, cap, blue, 0.4, rounded tip}

† Simðf I
j ; f

R
ij Þ:jZ{1,2,.,14}Z{1, 1, 1, 1/3, 0, 0, 1/2, 0, 1,

1, 1/4, 0, 0, 0}

Similaryðf I ; f R
i ÞZ

Pn
jZ1 Wj !Simðf I

j ; f
R
ij ÞPn

jZ1 Wj

Z
14!1C1!1C8!1C3!1

3
C1!0C1!0C2!

Z70:73%

In the case of PILOT pen, there are 14 features, so nZ14.

Since the weight of each feature equals the total numbers of

the node itself and the nodes below, and we can get WjZ41.

f I
j means the input features and f R

ij denotes the ith item of

information in the database. Simðf I
j ; f

R
ij Þ indicates the

similarity weight of each feature between f I
j and f R

ij ; 1 for
equal and 0 for not equal. At last, through the formula of

Similaryðf I ; f R
i Þ, we can get a similarity value of 70.73% in

the PILOT pen case.

3.3. Algorithms of case-based reasoning

Fig. 6 shows the algorithms of CBR for the comparison

of product configuration. It is made up of the following
steps:

Step 0: Start.

Step 1: Input related feature values according to the

standardized format.

Step 2: Construct the product feature tree in accordance

with the data types defined in Fig. 2.



Table 1

Features of CNC machine at Taichung, Taiwan

Feature Option Feature Option

Model one 3 Tailstock

Model two 9 Tailstock quill diameter 1

Bed radius 6 Tailstock thimble 1

Rail radius 6 Tailstock body

movement

1

Center height 6 Tailstock quill

movement

2

Cross-slide length 2 Tailstock quill 1

Carriage width 2 Feeding

Center distance 15 X-axis speedy feeding 2

CNC controller 4 X-axis feeding rate 1

Carriage width 3 X-axis 2

Rail type 1 X-axis servo motor 1

Bed length 15 Z-axis speedy feeding 6

Headstock Z-axis feeding rate 2

Spindle bore 10 Z-axis transmission

type

3

Main spindle tip 10 Z-axis servo motor 4

Main spindle rotational

speed

10 Standard accessories

Main spindle thimble 7 Lubrication pump 1

Main spindle horse-

power

5 Cooling system 1

Turret Oil bump 1

Turret type 9 Eliminates truncating

device

3

Turret size 2 Enclosure guarding 2

Fig. 7. Input interfac

H.-E. Tseng et al. / Expert Systems with Applications 29 (2005) 913–925920
Step 3: According to the product feature tree, search the

most similar case from the database and check

whether it is the case the user needs following

Formulae (1) and (2).

If a previous case has been found, process

Step 4.

If no previous cases have been found, check

whether it is necessary to adjust the product

feature tree.

If the product feature tree needs to be

adjusted, jump to Step 3.

If the current case is set to be a new case,

jump to Step 5.

Step 4: Fine-tune the data of the previous case to fit the

current status.

Step 5: Store the adjusted data in the database.

Step 6: End.

In addition to the CBR algorithms for product

configuration knowledge database, the following manage-

rial steps are essential to building the type of product

configuration, and to verify the retrieval and comparison

model.

(1) Identify the system goal: Meetings can be held to set up

customization as the system goal and application

direction.
e of features.



H.-E. Tseng et al. / Expert Systems with Applications 29 (2005) 913–925 921
(2) The expression and storage of product configuration:

This should be designed by domain experts and built in

a modular way, which will enhance the flexibility and

reliability of retrieval and comparison processes.

Furthermore, adding the knowledge to the database

will improve the experience of the system.

(3) The retrieval and comparison of cases: Applying CBR

algorithms to the case of retrieval and comparison will

provide suggestions for decision references.

(4) The structure and flow chart of the system: With the

construction of the database and the design of similarity

algorithms, CBR inference mechanism can serve as the

kernel for the system.

(5) The construction and verification of the system: The

CCC programming language will be used to design

the system and applied in practical cases.
TLA

TLA33

HeadstockBed Tail
Cross
Slide

Back and
Front of

Guarding

6 in
A2-11

MT#5

25mm
CLT-
V12-
1000

Dove
Tail
Type

Q40520mm

Fixed
105

900mm
M42:114
-457rpm

TLA

TLA33

HeadstockBed Tails
Cross
Slide

Back of
Guarding Q63

4 in
A2-08

MT#5
M41:3.5-
14 rpm

25mmH4-250
Box

Type

Q40340mm

Fixed-
105

900mm

Fig. 8. Product feature trees of the n
4. Practical example

A local CNC machine manufacturer (http://www.

llcnclathe.com) at Taichung, Taiwan was used as a case

study. The company intended to build up their product

configuration system for the purpose of product specifica-

tion management. The sectors involved in the project are the

business division responsible for order processing and the

R&D division for design projects. It also offered them a

good opportunity to reevaluate the company’s operation

system. The computer system was built on the basis of the

algorithms shown in Fig. 6 (see Section 3).

Through many meetings, 37 features of a CNC lather

were decided. As shown in Table 1, there are three features

corresponding to MODEL_ONE in that there are three

different manufacturing procedures for MODEL_ONE.
stock

Manual
- M42:114-

457rpm
FANUC-
2.1KW

FANUC-
3.8KW

3M

Appendix

Feature tree of number G163 in
database

Controller
Type

Controller
Type

tock

Manual
M41:3.5-

14rpm
FANUCA
i12/3000

1M

Appendix

Feature tree of new order

FANUCA
i22/3000

ew order and old order G163.

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa


H.-E. Tseng et al. / Expert Systems with Applications 29 (2005) 913–925922
For these 37 features, there will be 2.74!1017 types of

product configuration, which is too huge for engineers to

handle. This is one of the major reasons why the variation in

some features would cause trouble to the management

sector. Fig. 7 shows the input interface the authors built for

the business sector. The business personnel turned the

customer’s needs into new job orders. With the algorithms

mentioned in Section 3, a newly confirmed order would be

changed into a product feature tree as seen in Fig. 8(a), from

which the R&D personnel would get a tree structure as the

details shown on the left side of Fig. 9.

The right side of Fig. 9 shows the cases in the database

and the similarity data from the comparison procedure. In

the center of Fig. 9, the data of a previous case with the

highest similarity are prompted. Comparison shows that the

similarities between two job orders and the new one are 0.36

and 0.039 for job order G163 and job order G176,

respectively. Furthermore, using the algorithms in Fig. 6,

we can obtain that G163 is the most similar previous case.

The fact that job order G163’s product feature tree

(Fig. 8(b)) is pretty close to that of the new order

(Fig. 8(a)) demonstrated that G163 can be used as reference

for further design and development. The management sector

can also use G163 for further cost estimation.

In accordance with the algorithms in Fig. 6, previous

case G163 was adjusted to suit the present condition. In

Fig. 9, the tree structure of job order G163 is shown on
Fig. 9. Analysis and evaluation
the left side while the right side describes the features of

the nodes in the tree structure. After adjustment of the

features, the data are updated and stored as a new case in

the database for later retrieval. The output demonstrated

that when the BOM tree structure is properly designed,

engineers might find that seldom do some parts or

subassembly need to be changed right in the early design

stage. This will reduce the probability of design

adaptation. Furthermore, from previous experience of

design, such as engineering or assembly drawings, some

design might not be necessary and could be deleted. As a

result, when the similarity between the new problem and

the previous case is higher, the degree of differentiation

between these two cases is lower, and vice versa. Fig. 10

shows the comparison procedure.

According to the requirement of the company, the cost of

the CNC lather is divided into three parts: (1) material cost,

(2) machining expenses, and (3) deduction expenses as

shown in Fig. 11. This will make it possible for engineers to

conduct related cost analysis of the parts during design

stages. For example, when it is necessary to change the

tailstock and bed, the cost analysis of the system

demonstrates that the cost for the bed variation is much

bigger than that of the tailstock. Hence, the bed has a higher

priority in design. If it happens that some design variation

should be done, the flexible cost in this part can be reduced,

thus reaching a substantial cost cut in a company.
for product feature trees.



Fig. 10. Comparison procedure of BOM tree.

Fig. 11. Cost analysis of product case.

H.-E. Tseng et al. / Expert Systems with Applications 29 (2005) 913–925 923



H.-E. Tseng et al. / Expert Systems with Applications 29 (2005) 913–925924
Insofar as the practical case shows, the following notes

merit greater:

1. The CBR algorithms can be applied under the condition

that the product feature tree is built up according to a

certain specification, from which an effective database is

formed.

2. The previous experience can be sufficiently recorded and

transmitted, which will dramatically reduce the error

rate in dealing with the product specification.

3. The result of this study clarifies that there might exist

some differences between the current job order and the

most similar previous job order. Therefore, designers

can focus on the differentiation parts of job order, hence

saving time and energy. For example, the differences

between the current job order and previous job order

G163 lie in the tailstock and the headstock (Fig. 9).

Therefore, designers need only to adjust the related

parts.

4. Because the design variation is done from the most

similar previous case, CBR system can effectively

reduce the frequency of design adaptation. When it

is necessary to perform some change in design, it can

lower the cost for design differentiation. For instance,

when there are two other parts to be changed, we can

analyze their cost and choose to adjust only the one

of lower cost.
5. Conclusions

In this study, CBR technique was applied to the planning

of BOM. Previous cases that are similar to the current

problem were retrieved and adjusted in accordance with the

present constraints. The results demonstrated that such an

approach could reduce the time needed to generate BOM

and offer R&D staff members an accurate direction to

follow. In this way, designers can share with each other their

knowledge and experience. More importantly, it can avoid

the loss of experience and the same mistakes in product

design. In addition, because the newly generated BOM

comes from the adjustment of a previous case, the situation

in which parts are of raw universal usage will be prevented,

thus solving the diversity problem in product configuration.

Some of the concrete contributions the authors make in

this study are listed below.

1. Through the product configuration specified by CBR

algorithms, the R&D knowledge and experience in a

manufacturing company has been effectively taken

down and systematically standardized.

2. In the traditional graph-based system, the rules derived

from the constraint relationships of features will cause

difficulty in the maintenance routine, especially, for

complicated products. As far as this is concerned, CBR

can effectively solve the problem.
3. The authors employed Borland CCC Builder 6.0 to

write an program, which can simulate the learning

ability of the R&D personnel. Furthermore, it can

efficiently help generate an accurate BOM.

In the future, emphasis can be placed upon the

application of cluster analysis in the database so as to

enhance the retrieval speed and lower the burden of the

database. In the comparison of cases, the viewpoint of

Fuzzy comparison can be added to reinforce the inference

algorithms.
Acknowledgements

The authors would like to thank the CNC manufacturing

company in Taichung, Taiwan for their support in the test

and evaluation of the program. This paper is part of a project

for the industry and personnel promotion program (NSC 91-

2622-E-212-018-CC3). The financial assistance from

National Science Council, Taiwan, ROC is also gratefully

acknowledged.
References

Chang, H. C., Dong, L., Liu, X. F., & Lu, W. F. (2000). Indexing and

retrieval in machining process planning using case-based reasoning.

Artificial Intelligent in Engineering, 14(1), 1–13.

Changchien, S. W., & Lin, M. C. (2005). Design and implementation of a

case-based reasoning system for market plans. Expert Systems with

Applications, 28, 43–53.

Chiu, C. (2002). A case-based customer classification approach for direct

marketing. Expert Systems with Applications, 22, 163–168.

Choy, K. L., Lee, W. B., & Lo, V. (2003). Design of an intelligent supplier

relationship management system: A hybrid based neural network

approach. Expert Systems with Applications, 24, 225–237.

Cunningham, M., Higgins, P., & Browne, J. (1996). A decision support tool

for planning bills-of-material. Production Planning and Control, 7(3),

312–328.

Du, X., Jiao, J., & Tseng, M. M. (2002). Product family modeling and

design support: An approach based on graph rewriting system. Artificial

Intelligent for Engineering Design, Analysis and Manufacturing, 16(2),

103–120.

Fohn, S. M., Liau, J. S., Greef, A. R., Young, R. E., & O’Grady, P. J. (1995).

Configuring computer systems through constraint-based modeling and

interactive constraint satisfaction. Computer in Industry, 27, 3–21.

Göker, M. H., & Roth-Berghofer, T. (1999). The development utilization of

the case-based help-desk support system HOMER. Engineering

Applications of Artificial Intelligence, 12, 665–680.

Hegge, H. M. H., & Wortmann, J. C. (1991). Generic bill-of-material: A

new product model. International Journal of Production Economics,

23(1–3), 117–128.

Heylighen, A., & Neuckermans, H. (2001). A case base of case-based

design tools for architecture. Computer-Aided Design, 33, 1111–1122.

Hsh, C. I., Chiu, C., & Hsh, P. L. (2004). Prediction information systems

outsourcing success using a hierarchical design of case-based

reasoning. Expert Systems with Applications, 26, 435–441.

Jiao, J., Ma, Q., & Tseng, M. M. (2003). Towards high value-added

products and services: Mass customization and beyond. Technovation ,

809–821.



H.-E. Tseng et al. / Expert Systems with Applications 29 (2005) 913–925 925
Jiao, J., Tseng, M. M., Ma, Q., & Zou, Y. (2000). Generic bill-of-materials-

and-operations for high-variety product management. Concurrent

Engineering: Research and Applications, 8(4), 297–319.

Kim, K. S., & Han, I. (2001). The cluster-indexing method for case-

based reasoning using self-organizing maps and learning vector

quantization for bond rating cases. Expert Systems with Applications,

21, 147–156.

Kobler, A., & Norrie, M. C. (1997). A Product information system based on

an object-oriented internet database System. Proceedings of the Sixth

IEEE Workshops on Enabling Technologies Infrastructure for

Collaborative Enterprises (WET-ICE’97), June, 97, 43–48.

Kolodner, J. L. (1993). Case-based reasoning. Pali Alto: Morgan Kaufman.

Lau, H. C. W., Wong, C. W. Y., Hui, I. K., & Pun, K. F. (2003). Design and

implementation of an integrated knowledge system. Knowledge-Based

Systems, 16, 69–76.

Liao, T. W., Zang, Z. M., & Mount, C. R. (2000). A case-based reasoning

system for identifying failure mechanism. Engineering Applications of

Artificial Intelligence, 13(2), 199–213.

Olsen, K. A., & Saetre, A. P. (1997). Managing product variability by

virtual products. International Journal of Production Research, 35(8),

2093–2107.

Ryu, Y. U. (1999). A hierarchical constraint satisfaction approach to

product selection for electronic shopping support. IEEE Transactions
on Systems, Man and Cybernetics-Part A: Systems and Humans, 29(6),

525–532.

Salvador, F., & Forza, C. (2004). Configuring products to address the

customization-reponsiveness squeeze: A survey of managing issues

and opportunities. International Journal of Production Economics, 91,

273–291.

Schmidt, G. (1998). Case-based reasoning for production scheduling.

International Journal of Production Economics, 56–57, 537–546.

Simpson, T. W., Seepersad, C. C., & Mistree, F. (2001). Balancing

commonality and performance within the concurrent design of multiple

products in a product family. Concurrent Engineering: Research and

Applications (CERA), 9(3), 177–190.

Vang, E. A. V., & Wortmann, J. C. (1992). New developments in

generative BOM processing systems. Production Planning and

Control, 3(3), 327–335.

Vong, C. M., Leung, T. P., & Wang, P. K. (2002). Case-based reasoning

and adaptation in hydraulic production machine design. Engineering

Applications of Artificial Intelligence, 12, 567–585.

Wang, S. L., & Hsu, S. H. (2004). A web-based CBR knowledge

management system for PC troubleshooting. International Journal of

Advanced Manufacturing Technology, 23, 532–540.

Yang, B. S., Han, T. H., & Kim, Y. S. (2004). Integrated of art-Kohonen

neural network and case-based reasoning for intelligent fault diagnosis.

Expert Systems with Applications, 26(3), 387–395.


	Applying case-based reasoning for product configuration in mass customization environments
	Introduction
	Basic concepts of case-based reasoning
	Proposed CBR algorithms for product configuration
	Expression of product configuration
	Retrieval and comparison of cases
	Algorithms of case-based reasoning

	Practical example
	Conclusions
	Acknowledgements
	References


